Nonmetric Priors for Continuous Multilabel Optimization
نویسندگان
چکیده
We propose a novel convex prior for multilabel optimization which allows to impose arbitrary distances between labels. Only symmetry, d(i, j) ≥ 0 and d(i, i) = 0 are required. In contrast to previous grid based approaches for the nonmetric case, the proposed prior is formulated in the continuous setting avoiding grid artifacts. In particular, the model is easy to implement, provides a convex relaxation for the Mumford-Shah functional and yields comparable or superior results on the MSRC segmentation database comparing to metric or grid based approaches.
منابع مشابه
MLSLR: Multilabel Learning via Sparse Logistic Regression
Multilabel learning, an emerging topic in machine learning, has received increasing attention in recent years. However, how to effectively tackle high-dimensional multilabel data, which are ubiquitous in real-world applications, is still an open issue in multilabel learning. Although many efforts have been made in variable selection for traditional data, little work concerns variable selection ...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملTum Technische Universität München
We propose a general class of label configuration priors for continuous multi-label optimization problems. In contrast to MRF-based approaches, the proposed framework unifies label configuration energies such as minimum description length priors, co-occurrence priors and hierarchical label cost priors. Moreover, it does not require any preprocessing in terms of super-pixel estimation. All probl...
متن کاملLabel Filters for Large Scale Multilabel Classification
When assigning labels to a test instance, most multilabel and multiclass classifiers systematically evaluate every single label to decide whether it is relevant or not. This linear scan over labels becomes prohibitive when the number of labels is very large. To alleviate this problem we propose a two step approach where computationally efficient label filters pre-select a small set of candidate...
متن کاملWeakly Convex Coupling Continuous Cuts and Shape Priors
We introduce a novel approach to variational image segmentation with shape priors. Key properties are convexity of the joint energy functional and weak coupling of convex models from different domains by mapping corresponding solutions to a common space. Specifically, we combine total variation based continuous cuts for image segmentation and convex relaxations of Markov Random Field based shap...
متن کامل